Influence of the Front Surface Passivation Quality on Large Area n-Type Silicon Solar Cells with Al-Alloyed Rear Emitter
نویسندگان
چکیده
Efficiencies of large area n-type silicon solar cells with a screen printed rear side aluminum-alloyed emitter are mainly limited by their front surface recombination velocity. The front surface therefore has to be passivated by an effective passivation layer combined with a front surface field (FSF). In this work we investigate the influence of the front surface passivation quality and the base resistivity for a selective FSF n-type solar cell. The potential of this solar cell concept is assessed by PC1D simulations and QSSPC measurements. Furthermore we present solar cell results of all screen printed large area n-type Cz-Si solar cells with an aluminum rear emitter and a selective etch-back FSF passivated by a PECVD-SiNx or a SiO2/SiNx stack. The applied processing sequence is based on industrially available processing equipment and results in an independently confirmed cell efficiency of 19.4 % on a 6” solar cell. n-type; Al emitter; selective
منابع مشابه
Screen-Printed Al-Alloyed Rear Junction Solar Cell Concept Applied to Very Thin (100Î1⁄4m) Large-Area n-Type Si Wafers
Reducing the thickness of crystalline Si wafers processed to solar cells returns two significant benefits. Firstly, processing cost is reduced by saving costand energy-intensive Si material. Secondly, the required diffusion length of minority carriers is smaller, thus, wafers with a smaller carrier lifetime (e.g. due to higher base doping) can be utilized. In this work, the industrially feasibl...
متن کاملComparison of Front and Back Surface Passivation Schemes for Silicon Solar Cells
This work presents a comprehensive study on fast, low-cost methods for the electronic passivation of the phosphorus-diffused front surface and the non-diffused l'-type rear surface of crystalline Si solar cells. Titanium dioxide is compared with rapidly-grown thermal oxide (RTO) and PECVD silicon nitrides from three different laboratories. Double layers of RTO and Ti02 or SiN are also investiga...
متن کاملEffect of Surface Passivation on Si Heterojunction and Interdigitated Back Contact Solar Cells
Silicon surface passivation of hydrogenated silicon (Si:H) thin films deposited by RF and DC plasma process was investigated by measuring effective minority carrier lifetime (τeff) on Si <100> and <111> wafers and correlated with the silicon heterojunction (SHJ) cell performances in front emitter structure and interdigitated back contact (IBC) structure. Excellent surface passivation (τeff > 1 ...
متن کاملInkjet Printing of Isolation Layers for Back-Contacted Silicon-Heterojunction Solar Cells
For wafer based silicon solar cells, the combination of amorphous/crystalline silicon (a-Si:H/c-Si) heterojunction emitters (SHJ) [1] and back-contacted back-junction solar cell concepts (BCBJ) [2] offer a very high efficiency potential of around 24%. Stangl et al. proposed a relatively simple and therefore attractive cell concept comprising a two level metallization isolated by an insulation l...
متن کاملTunnel oxide passivated rear contact for large area n-type front junction silicon solar cells providing excellent carrier selectivity
Carrier-selective contact with low minority carrier recombination and efficient majority carrier transport is mandatory to eliminate metal-induced recombination for higher energy conversion efficiency for silicon (Si) solar cells. In the present study, the carrier-selective contact consists of an ultra-thin tunnel oxide and a phosphorus-doped polycrystalline Si (poly-Si) thin film formed by pla...
متن کامل